Boundary regularity of suitable weak solution for the Navier–Stokes equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations

We present some new regularity criteria for suitable weak solutions of magnetohydrodynamic equations near boundary in dimension three. We prove that suitable weak solutions are Hölder continuous near boundary provided that either the scaled L x,t-norm of the velocity with 3/p+ 2/q ≤ 2, 2 < q <∞, or the scaled L x,t-norm of the vorticity with 3/p+ 2/q ≤ 3, 2 < q <∞ are sufficiently small near th...

متن کامل

M ay 2 00 5 Regularity criteria for suitable weak solutions of the Navier - Stokes equations near the boundary

We present some new regularity criteria for “suitable weak solutions” of the Navier-Stokes equations near the boundary in dimension three. We prove that suitable weak solutions are Hölder continuous up to the boundary provided that the scaled mixed norm L x,t with 3/p + 2/q ≤ 2, 2 < q ≤ ∞, (p, q) 6= (3/2,∞), is small near the boundary. Our methods yield new results in the interior case as well....

متن کامل

Interior Regularity Criteria for Suitable Weak Solutions of the Navier-Stokes Equations

We present new interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point z if either the scaled L p,q x,t -norm of the velocity with 3/p + 2/q ≤ 2, 1 ≤ q ≤ ∞, or the L p,q x,t -norm of the vorticity with 3/p + 2/q ≤ 3, 1 ≤ q < ∞, or the L p,q x,t -norm of the gradient of the vorticity with 3/p + 2/q ≤ ...

متن کامل

Regularity for Suitable Weak Solutions to the Navier-Stokes Equations in Critical Morrey Spaces

A class of sufficient conditions of local regularity for suitable weak solutions to the nonstationary three-dimensional Navier-Stokes equations are discussed. The corresponding results are formulated in terms of functionals which are invariant with respect to the Navier-Stokes equations scaling. The famous Caffarelli-Kohn-Nirenberg condition is contained in that class as a particular case. 1991...

متن کامل

A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations

We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2015

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2014.12.016